Weighted Hardy-Type Inequalities in Variable Exponent Morrey-Type Spaces
نویسندگان
چکیده
منابع مشابه
Weighted Hardy and singular operators in Morrey spaces
We study the weighted boundedness of the Cauchy singular integral operator SΓ in Morrey spaces L(Γ) on curves satisfying the arc-chord condition, for a class of ”radial type” almost monotonic weights. The non-weighted boundedness is shown to hold on an arbitrary Carleson curve. We show that the weighted boundedness is reduced to the boundedness of weighted Hardy operators in Morrey spaces L(0, ...
متن کاملWeighted inequalities for fractional integral operators and linear commutators in the Morrey-type spaces
In this paper, we first introduce some new Morrey-type spaces containing generalized Morrey space and weighted Morrey space with two weights as special cases. Then we give the weighted strong type and weak type estimates for fractional integral operators [Formula: see text] in these new Morrey-type spaces. Furthermore, the weighted strong type estimate and endpoint estimate of linear commutator...
متن کاملLittlewood-Paley Operators on Morrey Spaces with Variable Exponent
By applying the vector-valued inequalities for the Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, the boundedness of the Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g μ *-functions, and their commutators generated by BMO functions, is obtained on the Morrey spaces with variable exponent.
متن کاملThe Wavelet Characterization of Herz-type Hardy Spaces with Variable Exponent
In this paper, using the atomic theory of the Herz-type Hardy spaces with variable exponent, we give their wavelet characterization by means of some discrete tent spaces with variable exponent at the origin.
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces and Applications
سال: 2013
ISSN: 0972-6802,1758-4965
DOI: 10.1155/2013/716029